Binary Classification of Cats Using Logistic Regression

The code you provided is a complete process for implementing a logistic regression model from scratch, and it also includes additional features to test different learning rates and predict your own images. Here's a brief description of the features you've implemented: 1. **Data Preparation**: - Read and preprocess the MNIST handwritten digit recognition dataset. - Convert each image from a 2D (64, 64) array to a 1D vector. 2. **Model Construction and Training**: - Implemented some key functions for logistic regression, such as parameter initialization, forward propagation, and backward propagation

Read More